Group-theoretical generalization of necklace polynomials
نویسندگان
چکیده
منابع مشابه
Group-theoretical generalization of necklace polynomials
Let G be a group, U a subgroup of G of finite index, X a finite alphabet and q an indeterminate. In this paper, we study symmetric polynomials MG(X,U) and M q G(X,U) which were introduced as a group-theoretical generalization of necklace polynomials. Main results are to generalize identities satisfied by necklace polynomials due to Metropolis and Rota in a bijective way, and to express M G(X,U)...
متن کاملSome compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملThe Braid Group of a Necklace
We show several geometric and algebraic aspects of a necklace: a link composed with a core circle and a series of circles linked to this core. We first prove that the fundamental group of the configuration space of necklaces (that we will call braid group of a necklace) is isomorphic to the braid group over an annulus quotiented by the square of the center. We then define braid groups of neckla...
متن کاملsome compact generalization of inequalities for polynomials with prescribed zeros
let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. in this paper we obtain some new results about the dependence of $|p(rz)|$ on $|p(rz)| $ for $r^2leq rrleq k^2$, $k^2 leq rrleq r^2$ and for $rleq r leq k$. our results refine and generalize certain well-known polynomial inequalities.
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Combinatorics
سال: 2011
ISSN: 0925-9899,1572-9192
DOI: 10.1007/s10801-011-0307-3